Inducing proliferation of human amnion epithelial and mesenchymal cells for prospective engineering of membrane repair.
نویسندگان
چکیده
OBJECTIVE To prepare a tissue engineering approach to fetal membrane repair after premature rupture of the membranes (PROM) by characterizing the proliferation potential of human amnion epithelial and mesenchymal cells from preterm and term placenta in primary culture. METHODS Amnion epithelial and mesenchymal cells from 15 preterm (23-36 week) and 27 term placentas collected at cesarean section were separated enzymatically, characterized immunohistochemically (anti-cytokeratin 18 and anti-E-cadherin, and anti-vimentin, respectively), and their ratio determined. Proliferation on tissue culture polystyrene (TCPS) or collagen in one medium and on TCPS in four different media after 14 days was measured photometrically and compared in preterm vs. term placenta. For statistical analysis the Mann-Whitney test was used. RESULTS Preterm and term epithelial:mesenchymal cell ratios were 4.3:1 and 7.8:1. Term epithelial cells proliferated similarly on TCPS or collagen. Mesenchymal cells proliferated only with fetal bovine serum (FBS). Proliferation of term amnion cells in medium containing FBS, epithelial growth factor (EGF), insulin, transferrin and triidothyronine(T3) was significantly increased (p < 0.001) compared with the other three media, and percentage proliferation was slightly higher in preterm cells. CONCLUSION Characterization of human amnion epithelial and mesenchymal cells identified the most potent proliferation-inducing medium yet. Studies of the wound-healing potential of these cells are needed, examining their behavior and proliferation on fibrin microbeads and other extracellular matrixes as the next step towards engineering membrane repair in PROM.
منابع مشابه
Expression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B
Background: Hemophilia B is an X-linked hereditary disorder of blood coagulation system which is caused by factor IX (FIX) deficiency. Factor IX is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. Replacement of factor IX with plasma-derived or recombinant factor IX is the conventional treatment for hemophilia B to raise the factor IX le...
متن کاملIn vitro lesion repair by human amnion epithelial and mesenchymal cells.
OBJECTIVE The purpose of this study was to compare wound healing by human amnion epithelial and mesenchymal cells from preterm and term placenta with the use of an in vitro lesion repair assay. STUDY DESIGN Lesions were created in confluent monolayers of amnion epithelial and mesenchymal cells from preterm and term placentas. The repair was monitored by the measurement of the lesion area and ...
متن کاملبررسی خون سازگاری سطح مزانشیمی پردهی آمنیون انسانی در مقایسه با رگ مصنوعی پوشش داده شده با هپارین
Background and Objective: Amniotic membrane (AM) as a natural tissue has lots of unique features which make it a suitable candidate for vascular tissue engineering. The aim of this study was to evaluate blood compatibility of mesenchymal surface of the AM. Materials and Methods: In this study, the effect of mesenchymal surface of the AM on internal and external coagulation pathways, hemolysis a...
متن کاملThe effect of amniotic membrane extract on umbilical cord blood mesenchymal stem cell expansion: is there any need to save the amniotic membrane besides the umbilical cord blood?
Objective(s): Umbilical cord blood is a good source of the mesenchymal stem cells that can be banked, expanded and used in regenerative medicine. The objective of this study was to test whether amniotic membrane extract, as a rich source of growth factors such as basic-fibroblast growth factor, can promote the proliferation potential of the umbilical cord mesenchymal stem cells. Materials and ...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of perinatal medicine
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2003